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Model Selection 
 

 Common in Pedagogy 
 

 Many instances involve Gaussian Linear Models  

and choice of r p  effects based on n observations  
 

 Common in Applications: 

1. In social sciences  
   p smallish & p << n 

2. In observational studies  
   larger p & p < n 

3. In physical sciences, biology and genomics  

   {very} large p & p<n [or (often) p>n]. 
[Ground rule: We’re interested in this case, but present talk is only about p<n.] 
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Inference after Model Selection 
 

 Generally uses the selected model, 
 

 And ignores the fact it was preceded by model selection 
  

 Here are some examples: 
1. From a textbook. 

2. A prototypical applied analysis 

3. A ―Toy‖ example to illustrate post model selection 

distributions 
 

 Then I’ll describe the nature of our research and results 
 

 The problem is OF COURSE not new. See Pötscher, Leeb, and 

collaborators for a recent series of papers and other references. 
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A Textbook Example 
From Moore and McCabe, Intro to Practice of Statistics (Chap 11) 

 

Sample of 1
st
 year computer science majors. 

 

Y = Cumulative GPA (after three semesters) 
 

X1 = HSMath, X2 = HSSci, X3 = HSEng, X4 = SATM, X5 = SATV 
 

 Several models are tried as ―predictors‖ of Y. For each, the 

resulting ANOVA table is examined: 

  eg, X1 – X3, X4 – X5, X1 – X5, X1 & X3. 
 

 X1 & X3 are chosen as the final set of predictors of Y. 
 

 There are several appropriate cautionary clauses. 
 

 I’ll focus on two 
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Two Important Cautions about Model Selection 
(one included in Moore and MCCabe, and one omitted!) 

 

―Individual regression coefficients, their standard errors and 

significance tests are meaningful only when interpreted in the 

context of the ….‖ 
 

A.  … ―other explanatory variables in the model‖ 
 

B. … model selection procedures that have been explicitly or 

implicitly applied to the same data to select the model. 
 

[There are no quotation marks on B because it isn’t in the text.  

But it should be.] 
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A Prototypical Application: Length of Criminal Sentence 
 

 L = Length of criminal sentence (months) 
 

 Y = Log(L + ½) 
 

 Xi = 13 possible ―predictors‖ of sentence length; i = 1,..,13. 
 

  eg, Drug possession, burglary, assault or gun-related as the primary offense (4 

variables), # of juvenile arrests, # of prior adult arrests, age, sex, etc. 
 

 n = 250 

 Model selection (all subsets BIC) chose 6 variables for the model. 

 Re-analysis of a new, validation data set of 250 using the model 

chosen on the test set gave quite different results. (And, only 4 of the 6 

chosen variables are significant in the re-analysis.) 
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 ―Toy‖ Example (the simplest of several) 
 

Gaussian linear model with p = 2 & n ; so let 
 

  2,Y N X I   [Set 2 1  , known, wlog.] 
 

 with  
1

1 0 0

0 .55 .44

0 .44 .55

X X


 
      
 
     

 .  

 

 All models contain 1 , the intercept coefficient AND ALSO 2 . 
 

 Model selection chooses M̂ with M̂  = full model if 3
ˆ 5 9  ; 

otherwise M̂  chooses only 1 2,  . [This is roughly AIC.] 
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Confidence Intervals 

 If  1,2,3M  , a fixed choice, then    2 3
ˆ ˆvar 5 9 varM M   .  

 Hence the routine intervals are 

1

ˆ ˆ2 2

5ˆ 1
2 9M M


    

   
 

  &  1

ˆ ˆ3 3

5ˆ 1
2 9M M


    

   
 

 

 If  ˆ 1,2M   then the routine interval (for ˆ2 M
 ) is 

 1

ˆ ˆ2 2

1ˆ 1
2 5M M


    

   
 

  (since   2 1,2
var 1 5  ). 

 Proper coverage of these intervals assumes 

     ˆ ˆ ˆ,
ˆ ˆvar 0,1jj M j M j M

z N     

 Is this true??? 
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Distribution of    ˆ ˆ ˆ12, 2 2
ˆ ˆvar

M M M
z      

 

Suppose (as a special case) 2 3 5 9    . 

-4 -3 -2 -1 0 1 2 3 4

 

___ = Actual distribution  ____= Ideal N(0,1) dist. 
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Consequences 

 The actual distribution is mis-centered and doesn’t have 1   

So 

 Confidence intervals formed under the standard assumption 

that      ˆ ˆ ˆ ˆ2, 2 2 2
ˆ ˆvar 0,1

M M M M
z N     will not have the 

nominal coverage. 

 In this ―toy‖, coverage isn’t deficient by a lot – 

  ˆ ˆ2 2
ˆ 1.96 5 9 0.938 0.95

M M
P      . 

 Suppose you look at both ˆ2 M
  and ˆ3 M

  (when  ˆ 1,2,3M  ). 

And then look at the distribution of ˆ2,M
z  if  ˆ 1,2M   or of the 

more extreme of ˆ,
, 2,3

j M
z j    if  ˆ 1,2,3M   (for simultaneous CIs). 
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Distribution of the more extreme ˆ,j M
z   

-4 -3 -2 -1 0 1 2 3 4

 
___ = Actual distribution  ____= Ideal N(0,1) dist. 

 

Here,   ˆ,
max 1.96

j M
P z   0.92  and    ˆ,

max 0.95
j M

P z  2.18 . 
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Formulation 

 Pre model-selection observations are 

  2, ,  is  and full ranknY N X I X p p   . 

Convention: Usually the ―intercept‖ is not of model selection interest. If so, then we assume the 

columns of X have been centered. 

[Generalizations such as non-normal models are of interest, but not treated here.] 

 Also assume, n > p. 

 Then       2
fullmodelˆ MSE   

is a valid estimate of 2 , free of any model selection effects. 

 A (sub)Model, M, is a subset of  1,.., p , and leads to 

   :M jX X j M  
 

 

( )jX  denotes the j-th column of X. 
M

X  is an  #n M  matrix.. 
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For a given model, M 

Denote the corresponding LS estimate by  

  
1ˆ

M M M M MX X X Y B Y


  . 

Coordinates of ˆ
M  are ˆ ,k M k M  .  

 

Let M MP XB  = Projection matrix on M. 
 

Let  

    ( )k M kM kx I P x  . 

Then 

 
2ˆ

k M k M k M k Mx Y x Y    
 

Note k M k Mx , the residual vector of ( )kx  from   ColSp
M k

X


.  
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Meaning of Correlation Coefficients within M 
 

 For given M define k M  by 

  ˆ
k M k M k ME X    . 

So, the centering and interpretation of each coefficient, k M , 

also depends on the identity of the other coefficients in M. 

 Conventional test of 0 : 0k MH    is based on  

 
ˆ

k M
k M

k M

Y
t




  

with Student’s-t null distribution & n−p df. 

 Conventional CI is  ;1 2
ˆ ˆCI tk M k M n p k Mx    . 

Note: n−p df, not n − #M.  If 2  is known then replace ̂  by   and t by Z (a standard normal).  
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Model Selection 
 

The data is examined and a ―model‖  M̂ M Y  is chosen.  

[Model selection is (only) about choice of predictor variables, not about 

– eg – transformation of Y.] 
 

This yields a post-selection design –   

M̂
X  = the columns of X with indices in M̂ . 

 

Conventional inference following Model Selection is Invalid: 
 

Typically  ˆ ˆCI 1
k M k M

P      [instead of desired 1   ]. 
 

We propose to construct Post Selection Inference with valid 

tests and multiple confidence statements (Family Wise Error).  
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PoSI Criterion (for CIs) 
 

Define constant K so that CI of the form 

 ˆ ˆ
ˆ ˆCI Kk M k M k M

x    

satisfies 

(*)  ˆ ˆCI 1
k M k M

P      for all ˆk M . 

K depends on  , p, n – p and X.  

 But K does not depend on the rule leading to M̂ , or on M̂  

itself, and (*) is true for all  . 

 A restricted version of (*) – call it (*k) is also of interest. 

This is (*) only for the fixed k, under the restriction M̂ k . 

See later for some results for (*k).  
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 Because of normality of ˆ
k M  (*) is equivalent to 

 ˆ ˆ1 max K
k M k M

P t


    
 

Then, because of linearity and centered-ness of ˆ
k M  this is 

implied by 

(**) 0 ;1 max KM k M k MP t 
     . 
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Canonical Form 
 

 Rotation of Y reduces problem to canonical form with new 
2ˆ, ,X Y   without affecting meaning of   (eg, TSH, Chapter 7), 

where now 

(CF)      2 2 2 2ˆ, , ,p p n pX p p Y N X I n p       . 

 A further rotation {of  
1 2

M X X X M


  } transforms to a 

form in which wlog X is symmetric in (CF) – ie  
1 2

X X X .  

 Changing the measurement scale of individual k  also 

does not affect the nature of the problem. Hence wlog, can 

assume  
1 2

X X X  is a correlation matrix (or that X X  is one). 
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PoSI is Possible 

Review: PoSI needs K such that 

(**)  0 ;1 max KM k M k MP t 
     . 

 

Theorem: Scheffe’s constant S , ;1K p n ppF    satisfies (**). 

Proof: By its construction  

(1)  0 0 ;1 max K max
ˆ ˆ

k M
M k M

k M

Y Y
P P K

 


   
      

   
c

c

c
.|| 

 

 KS does not depend on X. 

 KS may give very conservative CIs. (Inequality in (1) can be Big.)  

 It’s possible to do better. Here’s our plan:  



 20 

Proposal for Improved PoSI 
 

 For fixed  , p, n – p and X computationally find K=K(X) 

such that (**) holds – ie, 0 ;1 max KM k M k MP t 
    .  

 For modest p we can always do so by simulating the null 

distribution of Y, and using Monte-Carlo.  

[The limitation is that the max step involves looking at 
1

2
p

p


 

possibilities. So, ―naive‖ version of this requires (approx) 16p  .] 
 

 Alternatives to naive computation are being explored! 

 Also of interest: fix  , p, n – p and [using theory] find 

 inf KX X  and  sup KX X .  

 Then let p  for limit asymptotics. 
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 In special cases linear model theory and geometry yield 

useful results and perspectives.  

 Two tantalizing (and somewhat useful) facts 

1. Gram-Schmidt orthogonalities: 
   , k M l M l

k M l M x x


     

2. Duality: There are several duality facts. The easiest 

to state (though perhaps not the most intuitive) is 

    1K X K X   

(And, there is a corresponding match-up of partial correlation vectors 

from X and X
—1

.) 
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Bounds (1) 
 

 Lower Bound: 

 
       11K K 1 1 2

2log  as , ,   fixed 

p
X I

p p n p





    

  

. 

 

 Upper Bound: From an example (discussed later) 

      sup KX Sp o p X K p o p      . 
 

 Moral from comparison of these bounds:  

  Calculation of  K X  matters since the value can turn 

out to be anywhere from about 2log p  to about p   . 
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Bounds (2) 
 The logic in the PoSI proposal ignores the variable selection 

method. This is reflected in the computation of K via (**) which 

involves an upper bound over all possible model selections.  
 

 Justification(s) for this perspective –  

  (a) Many model selections are informal, and the methodology is not clearly 

specified in advance 

  (b) (**) provides a relatively straightforward possibility for creating valid 

(conservative) inference; this can be useful even if more complicated proposals could 

better take account of the model selection algorithm 

  (c) What we can so far idealize as possible alternatives seem to require 

computations of possible model-selection outcomes at the (unknown) value of  

and/or split-sample or other re-sampling options having uncertain fixed-sample 

properties. See Leeb and Pötscher for some ideas (and many negative properties). 

  (d) (**) can easily be modified for certain restricted model-selection plans. 
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―SPAR‖ 

 A model-selection routine for which (**) is sharp. 
 

 This is ―Single Parameter Adjusted Regression‖; formally 

   ˆ ˆspar ,
ˆˆ ˆ ˆ ˆ: maxM k M k Mk M

M M M Y k M t t      . 

 

 Though artificial, this approximates what a naive scientist 

might do - one who combs a large data set looking for the 

most ―publishable‖ result.  
 A modification of this is somewhat more plausible in a setting in which 

one first settles on a co-variate of principle interest, and looks for the set of 

control variates that make this have the largest apparent effect after 

including those controls. 
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Examples (1):  

1. Exchangeable Designs 
 

 1; ii ijX X r  ,  1 1 1p r     

Note: The limiting cases  1 or 1 1r p    also make sense under an 

appropriate interpretation. 

2. AR(1)  Designs 

 
i j

ijX r


  

3.  
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